
微信公众号
主要研究GFRP筋高温后的力学性能包括GFRP筋高温后的拉伸力学性能、GFRP筋高温后的抗剪性以及高温后GFRP筋混凝土构件极限承载力的计算等。西安GRC材料GFRP筋的高温力学性能,试验概况,试验目的,针对成型制备的GFRP筋进行高温后拉伸试验,筋材增强材料为无捻中碱玻璃纤维纱,基体树脂采用不饱和聚酯树脂(UP)和加入添加剂的改性不饱和聚酯树脂(MUP),对应筋材分别记为GP筋和GMP筋,筋材中玻璃纤维体积含量约为70%,树脂体积含量约为30%。添加剂为阻燃剂,阻燃剂为溴类化合物和锑的氧化物。试验采用纤维绳缠绕的GFRP筋。试验研究直径、基体树脂、温度、恒温时间和烧失量对GFRP筋高温后拉伸性能的影响。GP筋取10mm和12mm两种,GMP筋取中10mm,试验温度取为:室温、100°C、150°C、200°C、250°C、300°C、350°C,共计7个工况。为了研究火灾高温持续时间对GFRP筋材料性能的影响,对于10mmGP筋,在300C时对恒温0.5h、1.0h、1.5h、2。西安GRC材料oh共4种工况下的GP筋进行了高温后的试验研究;为了保证试验结果的可靠性,每种工况中保证有至少2个以上的试件,共计24组72根试件。
其中,直径10mm、搭接长度180mm的试件表现为黏结强度与是否配置箍筋无关,西安GRC材料主要是因为搭接长度180mm的试件全部发生筋拉断破坏,为非黏结破坏。虽然配箍率对黏结强度影响不大,但配箍试件试验结果离散性小,且破坏表现出一定延性。搭接长度不很大时,配箍率的增大,改善了试件受力不均匀性,限制裂缝开展,加强了GFRP筋外围混凝土的抗劈裂能力。GFRP筋直径,不同筋直径试件GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随GFRP筋直径的增加。注:表中显示的是混凝土强度C35,搭接长度分别为120mm、180mm,降低率=(GFRP筋直径10mm试件的黏结强度一其他直径试件的黏结强度)度×100%。显示的是混凝土强度C35,搭接长度分别为120mm、180mm,箍筋箍试件的黏结强度。(a)搭接长度120mm试件搭接长度120mm、180mm无配箍试件黏结强度随搭接长度120mm的无配箍试件,从直径10mm、12mm到0.12MPa、0.95MPa,降低率分别为1.01%、8.02%。分析其GFRP筋表面的变形大于其横截面中心的变形,这会导分布不均匀,即剪切滞后现象。西安GRC材料直径越大,横截面面积越大,剪切滞后现象就越明显,GFRP筋与混凝土的黏结强度也就会GFRP筋直径越大,包裹在筋表面的混凝土泌水越大,FRP筋与混凝土之间的接触面积减小,造成GFRP筋降低。
35.定位后,用扎丝将两根筋绑扎固定。不同搭接长度、不同筋直径、不同保护层厚度、不同配箍率GFRP筋预埋。西安GRC材料对于搭接段中点及4分点贴有应变片的试件,参考《混凝土结构试验方法标准(GB/T50152-2012)中的相关要求,并结合GFRP筋自身的特点粘贴应变片。不同于钢筋应变片粘贴首先用砂纸将钢筋表面打磨平整,为避免打磨对GFRP筋截面的削弱,粘贴GFRP筋应变片时在测点找到相对平整的面,用无水乙醇擦拭干净。用AB胶粘贴时,应用AB胶找平,但要保证涂抹胶层不能过厚,用棉棒轻轻擀压,将多余的胶排出,轻微调整应变片位置,使应变片方向与筋轴线平行且平整、紧密地贴在设计的测点位置。为防止浇筑过程中应变片受潮,在其表面涂抹薄薄一层环氧树脂,待胶层硬化后,再做连线及绝缘处理,其中,控制应变片包裹疙瘩尽量短小,以免过多影响黏结。西安GRC材料试件浇筑混凝土搅拌采用强制搅拌机。按照混凝土配合比,利用电子秤准确称量各材料用量。按照砂子水泥石子的投料顺序加料,搅拌均匀后,再加入所需用水量,然后继续搅拌至均匀。
由此可以看出,GFRP筋直径较小,搭接长度较短,混凝土强度较高,保护层达到定厚度的试件大多发生拔出破坏。西安GRC材料劈裂破坏,劈裂破坏是因为GFRP筋肋与混凝土形成机械咬合,拉拔力在混凝土中产生环向拉应力所致,是GFRP筋周围混凝土纵向劈裂使GFRP筋被拔出的破坏形式,故其实质是周围混凝土的劈拉破坏,而不是GFRP筋的搭接错固破坏,其最大破坏荷载小于GFRP筋与混凝土黏结破坏极限荷载。发生劈裂破坏的无配箍试件,在对拉力较小时,玻璃纤维开始断裂,间断发出“啪啪”声,加载筋首先开始滑移,而后不久,自由端也开始滑移,但滑移量都很小。随荷载逐渐增大,断裂声变得密集且声响增大,滑移量也不断增大。直到荷载接近峰值时,混凝土表面仍未见肉眼可看到的裂缝。达到极限荷载,裂缝突然贯穿混凝土表面,同时发出剧烈的劈裂声。西安GRC材料FRP筋直径16mm的混凝土试件甚至崩裂为散开的三块或四块,压力表读数急卸至0,表现为明显的脆性破坏。发生劈裂破坏的配箍试件与无配箍试件有明显的不同之处,即在最,后劈裂时,无配箍试件伴随一声“嘭”的巨响,裂缝贯通劈裂,裂缝宽度较大。
试件发生劈裂破坏时,随着混凝土强度的增大,混凝土的抗劈拉强度提高,对应试件破坏荷载增大,黏结强度提高。注:表中显示的是直径12mm,搭接长度分别为120mm、180mm,不同混凝土强度无配箍试件的黏结强度。西安GRC材料混凝土强度C35、C40试件的黏结强度一混凝土强度C30试件的黏结强度)/混凝土强度C30试件的黏结强度×100%。配箍率,不同配箍率试件GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随着配箍率的增大而提高,对于GFRP筋直径12mm、搭接长度120mm的试件,当箍筋间距80mm时,黏结强度较无配箍试件降低了0.17MPa;箍筋间距为6mm、40mm时,黏结强度依次增加了0.37MPa、1.16MPa,增长率分别为3.16%、9.9%。当箍筋间距为8omm时,搭接段只横跨了两根箍筋,对提高外围混凝土抗劈裂能力基本无作用;随箍筋间距减小,配箍率增大,搭接段橫跨箍筋数增多,箍筋和架立筋形成骨架对核心混凝土起到围箍作用,箍筋承担了部分劈拉力,使得试件的抗劈拉能力增强。西安GRC材料显示的是直径12mm,混凝土强度C35,搭接长度分别为120mm、180mm,不同配箍率试件黏结强度。
微信公众号
陕公网安备 61011202000784号