
微信公众号
但由于黏结胶体此时的热分解和炭化已较以前严重,玻璃纤维丝之间的黏结性能很大一部分不能恢复温度升高至350℃后,破断处为蓬松的絮状物,说明温度高于350℃时黏结胶体已经完全炭化,降温后胶体的黏结性能将不能恢复。四川FRP玻璃钢雕塑为了研究恒温时间长短对GP筋材试件的影响,对300°C时不同受火时间的GP筋材高温后的力学性能进行了试验研究。试验过程中发现,GP筋高温试验段外部玻璃纤维丝呈黑色,并且随恒温时间的增加,GP筋试件破断处的蓬松扇子絮状物逐渐增加。恒温90min时已经很容易看到很多毛茸茸的絮状物,由外及内逐渐变浅,内部为浅黄色,具有明显的层次感,此时外部颜色已经很深,呈炭黑色;恒温120min时GP筋破断处的絮状物明显较以前多,但仍是外部颜色深,向内变浅,很有层次感,此时内外的颜色已经很接近,说明此时GP筋高温段的热分解和炭化已经很严重。四川FRP玻璃钢雕塑从这些现象可以看出:在300℃(恒温120min)GP筋中的黏结胶体已经大部分丧失了黏结能力,但外层纤维的炭化程度较重。GMP筋在温度低于300℃时的破坏型式和室温时的破坏型式相同。
GFRP筋试件的破坏均为整体缓慢切断,断口较整齐,且都有不同程度的挤压变形,没有发生脆性剪断,这说明GFRP筋中的树脂性能较好,四川FRP玻璃钢雕塑纵向纤维对横向剪切有一定的作用。结果分析,对不同缠绕方式的GFRP筋进行剪切性能测试,通过理论分析。表面缠绕玻璃纤维東对剪切强度有明显的提高,玻璃纤维束的缠绕使GFRP筋成型时纤维更加紧密,与树脂充分结合,两者的协同工作性更强,从而使GFRP筋的剪切强度得到提高,同时,玻璃纤维束本身对剪切强度也有所贡献。在GFRP筋直径较小时,缠绕两层纤维束的GFRP筋剪切强度明显高于缠绕一层的GFRP筋,但是当直径较大时,两者的差别则不是很明显。四川FRP玻璃钢雕塑玻璃纤维筋在一定工况下会涉及扭矩这个力学指标,这里简单介绍一下玻璃纤维筋进行扭转测试的方法。本试验采用玻璃纤维带缠绕的GFRP筋和尼龙绳缠绕的GFRP筋进行抗扭性能测试测试其扭矩是否符合规范规定的用于煤矿支护的GFRP锚杆的要求。试验设备和试验试样,使用计算机控制扭转试验机,型号是NDW31000。计算机控制电子式扭转试验机主要用于非金属材料扭转性能试验。
①试样外观检查、状态调节按GB1446规定。②测量试样尺寸,测量精度精确到0.01mm。③升温速率10℃/min,升至试验温度然后恒温30。④加载速度2mm/min,连续加载至试样发生剪切破坏。⑤记录试样破坏后的最大荷载和破坏形式。⑥四川FRP玻璃钢雕塑有明显缺陷的试样应予以作废,每组有效试样至少3个,不足3个时,应重做试验。⑦剪切强度计算公式中τ—GFRP筋剪切强度,MPa;P—GFRP筋破坏时最大荷载,N;A—GFRP筋工作的横截面积,mm2;D—GFRP筋工作段实测直径,mm、试件设计本试验选用郑州大学纤维复合材料FRP筋试验室生产的GFRP筋。剪切试件在连续GFRP筋上截取,根据压式剪切器相关参数,截取试件长度L=130mm。试验现象,表观特征,可知:GFRP筋的自然颜色为白色,当GFRP筋受热后,100°℃时试件表面的颜色几乎没有改变,仍然呈白色,纤维绳没有任何松动;在150℃时,GFRP筋表面微呈焦煳状,为很浅的黄色,纤维绳开始松动,并且端部断掉;四川FRP玻璃钢雕塑在200℃时,GFRP筋表面焦煳状进一步加剧,为很浅的黄黑色,纤维绳完全脱离筋表面,纤维绳烧焦。
GFRP筋在250℃时,GFRP筋表面颜色进一步加深,已经接近于炭黑色;300℃、350℃两种温度时,GFRP筋表面颜色均呈炭黑色,这种温度条件下GFRP筋高温试验段的表面颜色已没有明显的区别试件表面颜色的变化是因为黏结胶体的炭化引起的。四川FRP玻璃钢雕塑从表面颜色的变化可以看出试件随温度的变化过程:在温度低于100℃时,黏结胶体没有炭化,所以GFRP筋材表面颜色并未发生改变;在150℃时,黏结胶体开始发生炭化,并且随温度的升高炭化程度加剧,所以在150~250℃时,随着温度的升高,试件表面的颜色逐渐加深;在250℃时,试件中黏结胶体的炭化程度已经很高,所以高于250℃的试件表面颜色均呈炭黑色。为加阻燃剂的玻璃纤维筋(GMP)在各温度下的情况,常温时颜色为黑色。250℃之前GMP筋发生的变化单从表面很难观察到,与常温下基本相同,但是温度增加至250℃时能很明显地看到GMP筋表面的纤维暴露,四川FRP玻璃钢雕塑这是由于黏结胶体发生炭化所致,这时GMP筋表面的纤维丝一根一根地暴露在外,GMP筋由于黏结胶体的炭化不再是一个整体。
微信公众号
陕公网安备 61011202000784号