
微信公众号
试验中发现,加热过程中,聚合物逐渐热解,试验温度越高,电炉口烟气越大,说明聚合物热解量越大。渭南GRC材料当试验温度高于300℃时,炉口的烟雾多且持续的时间长,高温试验段的GP筋开始明显变软,说明从300℃开始GP筋的热分解和炭化已经非常严重,此时筋的黏结胶体已经基本失去对玻璃纤维丝的黏结作用;350℃时高温试验段的GP筋已经变得非常柔软,能像纤维绳一样弯曲,说明此时GP筋的黏结胶体已经几乎完全分解和炭化,刚度几乎丧失殆尽,且很容易折断。说明此时GP筋的纤维丝由于高温的作用也已经变得不稳定350℃时的烧失量一般在3g左右。破坏形态,GP筋试件的典型破坏形态。试件常温下的破坏形态和高温后的破坏形态有明显的差异,且有明显的阶段性。渭南GRC材料常温下,试件首先在中部薄弱面引发裂缝源,当荷载达到破坏荷载的30%~50%时,试件开始发出“噼啪”响声,应为纤维剥离树脂的声音,随着荷载的继续增大,纤维开始逐渐断裂,响声不断加大且更加密集,达到极限荷载时伴随着巨大的响声,试件成条束状爆裂破坏。
由此可以看出,GFRP筋直径较小,搭接长度较短,混凝土强度较高,保护层达到定厚度的试件大多发生拔出破坏。渭南GRC材料劈裂破坏,劈裂破坏是因为GFRP筋肋与混凝土形成机械咬合,拉拔力在混凝土中产生环向拉应力所致,是GFRP筋周围混凝土纵向劈裂使GFRP筋被拔出的破坏形式,故其实质是周围混凝土的劈拉破坏,而不是GFRP筋的搭接错固破坏,其最大破坏荷载小于GFRP筋与混凝土黏结破坏极限荷载。发生劈裂破坏的无配箍试件,在对拉力较小时,玻璃纤维开始断裂,间断发出“啪啪”声,加载筋首先开始滑移,而后不久,自由端也开始滑移,但滑移量都很小。随荷载逐渐增大,断裂声变得密集且声响增大,滑移量也不断增大。直到荷载接近峰值时,混凝土表面仍未见肉眼可看到的裂缝。达到极限荷载,裂缝突然贯穿混凝土表面,同时发出剧烈的劈裂声。渭南GRC材料FRP筋直径16mm的混凝土试件甚至崩裂为散开的三块或四块,压力表读数急卸至0,表现为明显的脆性破坏。发生劈裂破坏的配箍试件与无配箍试件有明显的不同之处,即在最,后劈裂时,无配箍试件伴随一声“嘭”的巨响,裂缝贯通劈裂,裂缝宽度较大。
这些因素都会导致FRP筋材料的性能在火灾中逐步退化,造成FRP筋混凝土结构的破坏,严重威胁使用安全。因此,FRP筋混凝土结构抗火性能的研究对其在土木工程中的应用至关重要,提供这种结构的抗火设计方法和抗火防护措施势在必行。另外,当混凝土结构遭遇火灾后,钢筋或者GFRP筋和混凝土力学性能的劣化可能导致火灾后结构的安全性和耐久性不足,渭南GRC材料需随结构的损伤及剩余承载力进行计算和评估,进而对确定是否能继续服役及灾后加固修复的选择具有重要的现实意义。为了研究火灾环境中FRP筋材料和FRP筋增强混凝土结构的力学性能,保证FRP筋增强混凝土结构在火灾条件下的安全性,国外研究者从20世纪开始进行了尝试性的试验研究和理论分析。但目前国内外对FRP筋混凝土结构的抗火问题还没有系统深入,研究工作的欠缺导致对FRP筋混凝土结构的抗火性能认识不足,缺乏信心,从而影响了FRP筋在工程中的推广应用。渭南GRC材料基于此,本章对钢筋混凝土结构中应用最多的钢筋变形钢筋和钢筋的补充及替代的材料GFRP筋进行高温后力学性能的试验研究。
虽然因为缺氧不会产生明火,但是FRP筋中的黏结树脂和连续纤维本身均会受到高温的影响,致使纤维筋的强度随温度的升高而发生变化。渭南GRC材料日前有关高温后FRP筋力学性能的试验研究还不是很多,有关抗剪的就更少了。常温下FRP筋的抗拉强度和抗剪强度相差很大高温下FRP筋的抗拉强度损失较大,抗剪强度也会随温度而变化,因此需要研究高温后FRP筋的抗剪性能。试验概况,试验方案,试件直径为中10mm、中12mm的GP筋和中10 mm GMP筋,试验温度取为室温、100℃、150℃、200℃、250℃、300℃、350℃共计7个工况。为了研究升温和降温过程对GFRP筋材料的影响,在每个温度条件下分别有一组试件在高温后进行剪切试验,共计21组,每组3个试件,共63个试件。本试验主要研究温度、直径、基体树脂、烧失量等参数对GFRP筋剪切性能的影响,记录试验现象并分析剪切破坏机理。渭南GRC材料试验方法,参考《纤维增强塑料冲压式剪切强度试验方法》(GBT1450-2005)、《销剪切试验方法》(GB/T13683-1992)和相关文献,采用CMT系列计算机控制50kN电子万能试验机并配以压式剪切器进行剪切试验。具体试验方法如下。
荷载逐渐増大接近极限荷载时,玻璃纤维岀现的“噼里啪啦”断裂声变得密集且声响较加载初期大,加载端滑移明显增大,且两自由端的相对滑移值增大速率变快,伴随混凝土试件内发出“咯噔咯噔”的声响,GFRP筋从试件中拔出,混凝土表面没有出现任何肉眼可见的裂缝,筋的肋凸起明显磨损。渭南GRC材料相应在GFRP筋肋前有挤压形成的楔状堆积,GFRP筋与混凝土咬合齿也磨损严重,混凝土孔壁上有些许粉末状混凝土覆盖,GFRP筋肋的轮廓因为纵向挤压擦痕的缘故已基本磨平。往往搭接长度大些的试件刚拔出时压力表显示读数并未立刻卸为0,试件还能承受较小残余荷载,为拔出试件破坏形态。发生筋拔出破坏的主要有以下几种情况。对于筋直径12mm的试搭接长度60mm的GFRP筋全部发生拔出破坏;搭接长度120mm、保护层厚度60mm的无配箍试件,箍筋间距大于80mm的配箍试件,以及混凝土强度大于C40的大部分发生筋拔出破坏。渭南GRC材料对于直径10mm的试件,搭接长度120mm的大多无配箍试件以及大部分配有箍筋试件为拔出破坏。而直径16mm的试件,个别搭接长度120mm的配箍试件大多发生拔岀破坏。
微信公众号
陕公网安备 61011202000784号