
微信公众号
在GFRP筋接近破坏时,可以明显看到表面部分纤维東也逐渐被拉断,随着断裂纤维束的增多,GFRP筋中部突然发生“爆裂式”破坏,破坏部位纤维呈发散状,同时飞散岀许多细小纤维,此时试验结束,试件呈现明显的脆性破坏特征。宝鸡GRC100℃、150℃、200℃高温后的试验现象和破坏形态与常温下相似,临近破坏前的响声减弱,但破坏时的声音却仍然很大,伴随着“啪”的一声爆响,试件突然破坏;破坏处仍为发散状,说明玻璃纤维丝之间在温度降至室温后又恢复了部分黏结性能,可以协同受力。温度升至250°C、300℃C时,断口处的GP筋颜色从白色逐渐变为焦黄色,但在250°C时仍然较浅;随着温度的升高,破坏处夹杂的絮状物逐渐增多,当试验温度为300°C时,破坏处的条状物已经明显减少,稍显蓬松的絮状物增加。宝鸡GRC这些现象说明,GP筋的黏结胶体由外至内逐渐玻璃化、分解,降低了对玻璃纤维丝的黏结作用,玻璃纤维丝协同工作的能力下降。断口处颜色呈褐色,夹杂少许絮状物,说明黏结胶体在降温后黏结性能有所恢复。
大量新型建筑料广泛应用,以及燃器、电器的普遍使用,建筑物的大规模化和功能的复杂化,导致火灾的因素随之增加,火灾规模也日趋扩大,大大增加了建筑物发生火灾的可能性且使火灾危害性更加严重。宝鸡GRC高温作用下,材料性能受到不同程度的损伤,混凝土的强度和弹性模量随着温度而降低,钢筋虽有混凝土保护,但强度也会降低。若结构的环境温度升高很多,或度发生周期性变化时,结构会因使用性能下降或承载力下降而失效,发生局部破坏,整体倒塌。目前,国内外对钢筋的高温力学性能的研究较多,和钢筋相比,FRP筋材料热稳性较差,更不耐火。FRP筋是由高强连续纤维通过胶体黏结成的复合材料,当承受外部荷载时,众多黏合在一起的纤维丝可以均匀受力,共同工作性能良好。黏结胶体是高分子材料,对高温比较敏感,高于一定温度会产生玻璃化和炭化,从而导致黏结作用退化和丧失。宝鸡GRC并且高于一定温度时,处于高温环境中的连续纤维丝的性能也会发生不同程度的变化,连续纤维材料的性质也变得不稳定。
缠绕玻璃纤维束的GFRP筋能够在40N·m扭矩作用下坚持更长的时间而不发生破坏,这对于GFRP锚杆在边坡、煤矿支护过程中更加有利。宝鸡GRC但由于用玻璃纤维束作为缠绕物生产时,纤维束为松散状,容易搅在一起而影响生产的稳定性与连续性,用玻璃纤维带缠绕时不会出现此问题,并且抗扭性能与用玻璃纤维束差不多,均比尼龙绳缠绕的强,综合考虑用玻璃纤维带缠绕的GFRP筋材更适合作为锚杆。腐蚀环境下的力学性能,尽管FRP材料不会像金属那样产生电化学腐蚀,但仍然会在不同的化学环境中(包括酸、碱)发生性能的劣化。宝鸡GRC这种劣化随着温度的升高而加剧,由于纤维的“沥滤”作用,其很容易受到碱性和中性溶液的腐蚀,但是在树脂包裹下形成的FRP制品后会有很大的改善,目前国内外对此也开展了一定的研究,AC1440委员会有关研究没有对其产品给出明确的规定,但是强调暴露于环境中的构件,采用GFRP筋进行构件增强时,强度标准值应乘以0.7的安全系数,以作为设计强度。某实验现场取样进行常温化学物质3个月腐蚀性试验。
混凝土强度C30的试件,全部表现为混凝土劈裂破坏,而混凝土强度C35、C40的试件,大部分为筋拔出破坏,故混凝土强度从C30变化至C35时黏结强度增长显著,而C35变化到C40时增长较少。宝鸡GRC对于搭接长度为180mm的试件,混凝土强度从C30变化至C35时,黏结强度提高了0.58MPa,增长率为6.86%,增长较小;而混凝土强度从C35变化至C40时,黏结强度提高了1.7MPa,增长率为20.12%,增长显著。观察试件破坏形态,随搭接长度由120l8omm变化,试件极限破坏荷载增大,混凝土承受的环向拉力增大,同C30的混凝土样、即便是C35的混凝土试件也大多发生劈裂破坏。当混凝土强度增至C40时,混凝土抗劈拉强度继续增长,此时试件大多发生筋被拉断的破坏,而GFRP筋能承受的极限拉力较于劈裂破坏荷载大,故较之于C30、C35混凝土试件,C40的黏结强度有显著提高。黏结强度随混凝土强度增长而增长的原因如下。宝鸡GRC当试件发生拔出破坏时,GFRP筋的黏结强度主要取决于两者之间的机械咬合力。混凝土强度较低时,GFRP筋肋间的混凝土易被压碎;而混凝土强度较高时,GFRP筋肋剪切强度低于混凝土的抗压强度,GFRP筋肋被剪坏。
反力架本试验中特别制作反力架以施加对拉荷载。反力架包括4根长1.1m、材质为345、直径为36mm的全套丝螺杆以及配套的16个螺母,螺杆全套丝,以便于调节加载间距;1块大小400mm×400m×4mm的Q235承压钢板,2块400mm、400mm×35mmQ235钢板。宝鸡GRC其中2块A0m×400mmx35mm的钢板打孔后沿中缝切开,便于试件快速装卸。反力架加载示意制作加工试验所需零部件。80点CM2B静态应变采集仪。试件的破坏形态分析,拔出破坏,试件发生拔出做坏一般有两种形式。一种是光面GFRP筋拔出或带肋GHRP筋肋被混凝土剪坏而拔出。光面GFRP筋与混凝土的黏结主要靠化学胶结力和摩擦力,而两者提供的黏结力都很小,所以此类GFRP筋与混凝土的黏结很差,所以较少应用于混凝土构件中。宝鸡GRC同时,由于国内目前GFRP筋生产工艺还不够完善,表面带肋(FRP筋工作性能不是很稳定,表面横肋易脱落或是抗剪较弱。另外一种是GFRP筋肋间混凝土被剪坏。试验中两种形式均有出现试验中发生拔出破坏的试件,加载初期,GFRP筋承受拉力逐渐增大,外围玻璃纤维开始断裂并伴随“啪啪”声响,加载端在荷载较小时就开始滑移,随荷载继续增大,自由端发生滑移滑移较慢且滑移量小。
300℃、350℃两个温度时随温度的升高炭化逐步加深,试件中黏结胶体的炭化程度已经很高,可以看出从250℃开始GMP筋表面的颜色变得更黑为直径对拉伸弹性模量的影响规律。宝鸡GRC由数据可知,随着直径的增大,拉伸弹性模量呈增大的趋势,室温试验时12mmGP筋试件比少0mmGP筋的弹性模量逐渐增加了7.9%,350℃高温后试验时中12mmGP筋比10mmGP筋的弹性模量增加了5.1%为直径对极限应变的影响规律。数据可知,随着直径的增加,室温试验时GFRP筋试件的极限应变有少量增加,即直径大的GFRP筋试件的延伸性能好些;然而350℃高温后试验时中12mmGP筋比41mmGP筋的极限应变由于自身的原因随直径的增大有所降低。恒温时间,为了研究恒温时间对GFRP筋试件材性的影响,300℃时进行了恒温30min、60min、90min、120min四个不同恒温时间的试验。可以看出,GFRP筋的极限抗拉强度在恒温60min时达最大值,9omin、120min时比60min时有所降低;宝鸡GRC随恒温时间的增加,拉伸弹性模量逐渐増大;平均极限应变随恒温时间的增加小幅度减小。造成这一结果的原因是随恒温时间的增加,GFRP筋试件炭化、分解越来越严重,所以极限应变随恒温时间的增加降低。
微信公众号
陕公网安备 61011202000784号