
微信公众号
试件发生劈裂破坏时,随着混凝土强度的增大,混凝土的抗劈拉强度提高,对应试件破坏荷载增大,黏结强度提高。注:表中显示的是直径12mm,搭接长度分别为120mm、180mm,不同混凝土强度无配箍试件的黏结强度。西宁斗拱混凝土强度C35、C40试件的黏结强度一混凝土强度C30试件的黏结强度)/混凝土强度C30试件的黏结强度×100%。配箍率,不同配箍率试件GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随着配箍率的增大而提高,对于GFRP筋直径12mm、搭接长度120mm的试件,当箍筋间距80mm时,黏结强度较无配箍试件降低了0.17MPa;箍筋间距为6mm、40mm时,黏结强度依次增加了0.37MPa、1.16MPa,增长率分别为3.16%、9.9%。当箍筋间距为8omm时,搭接段只横跨了两根箍筋,对提高外围混凝土抗劈裂能力基本无作用;随箍筋间距减小,配箍率增大,搭接段橫跨箍筋数增多,箍筋和架立筋形成骨架对核心混凝土起到围箍作用,箍筋承担了部分劈拉力,使得试件的抗劈拉能力增强。西宁斗拱显示的是直径12mm,混凝土强度C35,搭接长度分别为120mm、180mm,不同配箍率试件黏结强度。
高温后GFRP筋的残余弹性模量采用与常温下相同的方法。极限应变通过极限抗拉强度和弹性模量由下式求得。西宁斗拱各因素对GFRP筋力学性能的影响如下。温度,温度对GFRP筋试件极限抗拉强度、平均弹性模量和平均极限应变的影响。中10mmGP筋极限抗拉强度在温度低于200℃时呈现增加的趋势,在200℃时达最大值,比常温时增加了18.85%,随后开始逐渐降低,小10mmGP筋350℃时极限抗拉强度比常温时降低了5.19%;410 mm gMP筋极限抗拉强度在100℃时达最大值,比常温时增加了9.91%,随后开始逐渐降低,10 mm gMP筋350℃时极限抗拉强度比常温时降低了37.35%;φ12mmGP筋350℃时极限抗拉强度比室温时降低了26.16%,由于GFRP筋材离散性较大,温度对它影响的规律性不明显,并且在试验温度范围内极限抗拉强度有所波动。西宁斗拱φl0mmGP筋弹性模量温度低于200℃时呈现增加的趋势,200℃时达最大值,比常温时增加了27.63%,随后随温度升高逐渐下降,350℃时比常温时降低了20.29%;φ1 mm GMP筋弹性模量在温度低于300℃时和常温相差不多,350℃时弹性模量急剧降低,比常温时降低了21.4%;φ12mmGP筋弹性模量先降低,随后又有所增加,350℃时比常温时降低了22.44%。
当GP筋受热后,西宁斗拱在100℃时试件表面的颜色几乎没有什么改变,仍然呈白色;在150℃时,高温试验段的GP筋表面为很浅的黄色;200℃、250℃、300℃三种温度时高温试验段的颜色逐渐加深,由焦黄色→褐色→接近炭黑色;350℃时GP筋高温试验段的表面颜色已经完全呈炭黑色。(a)100℃时的试件颜色;(b)150℃时的试件颜色;(d)250℃时的试件颜色;(c)200℃时的试件颜色;(e)300℃时的试件颜色;(f)350℃时的试件颜色。然而,GMP筋常温时的颜色呈黑色,高温后颜色没有改变,还是呈现黑色,因此单从颜色很难判断GMP筋经历了多高的温度以及是否炭化。GP筋试件表面颜色的变化是因为黏结胶体的炭化引起的。从表面颜色的变化可以看出试件随温度的变化过程:在温度低于150℃时,黏结胶体没有炭化,所以GP筋材表面的颜色没有发生变化;西宁斗拱在150℃时黏结胶体开始轻微炭化,并且随温度的升高,炭化逐步加剧所以随温度的升高,GP筋的颜色逐渐加深;在300℃时GP筋的黏结胶体已经炭化很严重所以高于此温度后试件都呈现炭黑色。
西宁斗拱通过几个月的试验研究发现,常规的酸性溶液、碱性溶液和NaCI溶液对于GFRP筋(乙烯基树脂、无碱玻璃纤维粗纱)制品确实有一定的侵蚀作用,同时由于乙烯基树脂极好的抵抗化学介质的性能,使得常规化学物质的常温侵蚀作用效果十分有限,一般不会超过5%。如此看来,ACI440委员会强调暴露于环境中的构件,采用GFRP筋进行(混凝土)构件增强时,强度标准值应乘以0.7的安全系数,以作为设计强度的提法,是具有客观科学依据的。酸性溶液,为了确认GFRP筋对于酸性溶液的抵抗能力,采用少28mm、由乙烯基酯树脂生产的玻璃纤维筋进行测试。试验条件如下。①分别采用pH值为2和5的H2SO4溶液作为实验介质。②GFRP螺纹筋的浸泡。将GFRP螺纹筋分别放入两种H2SO4溶液中常温浸泡,浸泡时间为90天。③浸泡后的GFRP螺纹筋再进行拉伸试验。将浸泡后的GFRP螺纹筋取出后,用清水将表面洗净。西宁斗拱实验结果如下。①GFRP螺纹筋经过pH=2的H2SO溶液浸泡90天后,拉伸强度由602.51MPa下降到579.31MPa,拉伸强度保持率达96.1%,下降幅度仅3.85%。②弹性模量由41.68GPa上升到43.19GPa,基本保持不变。
烧失量超过1g后,试件非常容烧失量。高温试验段被剪断,说明烧失量超过1g后GFRP筋材中的玻璃纤维丝的强度也因为受热而变得不稳定,这时的GFRP筋不能再协同工作。西宁斗拱GFRP的搭接性能,研究内容,纤维增强复合材料(FRP)筋具有轻质高强、耐腐蚀性能好等诸多优点,可作为钢筋的替代或补充材料用于增强混凝土结构。随着FRP筋在大跨结构中使用,相应FRP筋连接问题逐渐引起关注。与钢筋混凝土结构相似,FRP筋与混凝土的黏结性能是两者协同工作的基础。FRP筋一旦制作成型,就难以弯折,大长度筋材运输成为困难。而此时,FRP筋在结构中的连接就显得必不可少。目前,FRP筋连接主要有套管连接、膨胀连接、绑扎搭接和黏结绑扎搭接。类似于钢筋的绑扎搭接,由于搭接接头传力可靠且施工方便,所以这种连接方法在工程得以广泛应用。西宁斗拱FRP筋搭接实质是筋材与混凝土的黏结锚固,由于搭接筋接触使每根筋都缺少混凝土握裹,两者间黏结削弱。因此,搭接筋搭接长度应大于单根筋黏结锚固长度以保证结枃安全。
微信公众号
陕公网安备 61011202000784号