
微信公众号
1mmGP筋的极限应变先随温度升高而降低,100℃时降至整个试验温度范围的最低点,铜川GRG构件随后开始逐渐增大,350℃时达最大值,比常温时增加了36.66%;10mm GMP筋极限应变先随温度升高小幅增大,100℃时达最大值,随后逐渐降低,300℃时降至最小值,比常温时降低了38.33%;小12mmGP筋的极限应变温度低于300℃时和常温相差不多,350℃时极限应变急剧降低,比常温时降低了44.12%。350℃高温后GFRP筋极限抗拉强度维持在室温时的80%以上,但是由于到达此温度时GFRP筋已经变得极为柔软,刚度很小,弹性模量不足常温时的70%,所以即使高室温后极限强度有所恢复,建议GFRP筋的耐高温极限仍然不能高于300℃。可以看出:GFRP筋的极限荷载、极限抗拉强度、平均拉伸弹性模量和极限应变在温度较高时比常温低。铜川GRG构件造成GFRP筋强度、弹性模量和极限应变降低的主要原因有3方面:①黏结胶体随温度的升高逐渐玻璃化、炭化和热分解,导致对抗拉强度的贡献逐渐减小乃至丧失;②黏结胶体黏结作用的降低导致GFRP筋纤维丝协同受力的能力下降,最终导致GFRP筋性能的劣化。
由此可推断,树脂的改性对GFRP筋的剪切强度有较明显的影响,并且随温度的升高GMP筋和GP筋的剪切强度呈现相似的变化规律。铜川GRG构件常温时GP筋的剪切强度比GMP筋高29.01%,150℃后GP筋的剪切强度继续增加,到200℃高温后剪切强度达最大值193.32MPa,比常温时增加了31.91%,而GMP筋的剪切强度在200℃高温后开始降低,到300℃高温后剪切强度比常温时已经下降了16.37%;在250℃、300℃高温后GFRP筋的剪切强度比常温时略有增加;两种类型的筋在350℃高温后的剪切强度与常温时相比都已经剧烈地下降,GP筋的剪切强度比常温时的降低了60.76%,GMP筋的残余强度更低,比常温时的降低了66.66%。从曲线上看,GP筋的剪切强度比GMP筋的剪切强度随温度变化大,GMP筋的曲线较平缓,对温度的敏感性较GFRP筋小。从以上分析,可以大致确定,FRP筋的耐高温极限为300℃。烧失量对剪切强度的影响,烧失量为0时剪切强度随温度的升高有增加的趋势;随着烧失量从0增加到1g,剪切强度直线下降,铜川GRG构件说明黏结树脂的分解降低了GFRP筋的抗剪承载力;当烧失量超0mGm|过1g时,剪切强度更是剧减,说明黏结胶体的热分解和炭化已经非常严重,对玻璃纤维丝的黏结作用已经基本丧失。
浸泡后的GFRP螺纹筋再进行拉伸试验将浸泡后的GFRP螺纹筋取出后,用清水将表面洗净。测试结果如下。①GFRP螺纹筋经过6%的NaCl溶液浸泡30天后,铜川GRG构件拉伸强度由604.75MPa下降到583.28MPa,拉伸强度保持率达96.45%,下降幅度仅为3.55%。②弹性模量由43.21GPa下降到43.19GPa,基本保持不变。③GFRP螺纹筋经过6%的NaCl溶液中浸泡90天后,拉伸强度由604.75MPa下降到598.10MPa,下降幅度仅1.1%。④弹性模量由43.21GPa下降到41.44GPa,下降幅度为4.1%。⑤GFRP螺纹筋在饱和NaCl溶液中浸泡30天后,拉伸强度由604.75MPa下降到575.72MPa,性能保持率达95.20%,下降幅度仅为4.80%。⑥弹性模量由43.21GPa下降到40.08GPa,铜川GRG构件性能保持率达92.76%,下降了7.24%。⑦GFRP螺纹筋在饱和NaCl溶液中浸泡90天后,拉伸强度由604.75MPa下降到56.83MPa,性能保持率达93.73%,下降幅度约为6.27%。⑧弹性模量由43.21GPa下降到41.78GPa,下降幅度约为3.3%。乙烯基酯树脂制得的GFRP螺纹筋在NaCl溶液中浸泡30天和90天后,拉伸性能方面的下降并不是十分明显,说明乙烯基树脂的耐氯离子的能力较强。GFRP筋的高温力学性能,研究内容,随着国民经济现代化建设的发展,高层建筑不断涌现,房屋密度加大。
其中,直径10mm、搭接长度180mm的试件表现为黏结强度与是否配置箍筋无关,铜川GRG构件主要是因为搭接长度180mm的试件全部发生筋拉断破坏,为非黏结破坏。虽然配箍率对黏结强度影响不大,但配箍试件试验结果离散性小,且破坏表现出一定延性。搭接长度不很大时,配箍率的增大,改善了试件受力不均匀性,限制裂缝开展,加强了GFRP筋外围混凝土的抗劈裂能力。GFRP筋直径,不同筋直径试件GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随GFRP筋直径的增加。注:表中显示的是混凝土强度C35,搭接长度分别为120mm、180mm,降低率=(GFRP筋直径10mm试件的黏结强度一其他直径试件的黏结强度)度×100%。显示的是混凝土强度C35,搭接长度分别为120mm、180mm,箍筋箍试件的黏结强度。(a)搭接长度120mm试件搭接长度120mm、180mm无配箍试件黏结强度随搭接长度120mm的无配箍试件,从直径10mm、12mm到0.12MPa、0.95MPa,降低率分别为1.01%、8.02%。分析其GFRP筋表面的变形大于其横截面中心的变形,这会导分布不均匀,即剪切滞后现象。铜川GRG构件直径越大,横截面面积越大,剪切滞后现象就越明显,GFRP筋与混凝土的黏结强度也就会GFRP筋直径越大,包裹在筋表面的混凝土泌水越大,FRP筋与混凝土之间的接触面积减小,造成GFRP筋降低。
微信公众号
陕公网安备 61011202000784号