
微信公众号
将混凝土拌和物分两层浇入试模,每层厚度大致相等。采用振动台将混凝土振捣密实,边振捣边用抹子将混凝土表面抹平。汉中FRP玻璃钢雕塑在浇筑试件的同时,每种配合比留两组150mm×150mm×150mm立方体试块,同条件养护,用于测定混凝土的抗压强度和劈裂抗拉强度。此外,根据试验要求,制作浇筑一定数量的GFRP应变补偿试块。试件拆模及养护为保证试件的完整性,在浇筑试件48h后拆模。拆模后将试件放在试验室环境中进行自然养护28d,同时浇筑的混凝土试块同条件养护。在试件表面覆盖塑料薄膜后,加盖专用养护毡,保温且防止水分过快散失。养护过程中,第一周每洒水养护两次,之后每天洒水养护一次,养护制作流程。进行试验前,将龄期已满的混凝土试块进行强度测试。其中,采用式(5-1)计算劈裂抗拉强度式中f—混凝土劈裂抗拉强度,MPa;P——测试试块破坏荷载,kN;A—试块劈裂面面积,mm2。汉中FRP玻璃钢雕塑加载装置及试验方法,千斤顶GFRP筋的搭接对拉所用加载设备为201及50t的穿式液压千斤顶,根据加载端钢管直径,选取与千斤顶配套的锚夹具,配合千斤顶施加拉力。
缠绕玻璃纤维束的GFRP筋能够在40N·m扭矩作用下坚持更长的时间而不发生破坏,这对于GFRP锚杆在边坡、煤矿支护过程中更加有利。汉中FRP玻璃钢雕塑但由于用玻璃纤维束作为缠绕物生产时,纤维束为松散状,容易搅在一起而影响生产的稳定性与连续性,用玻璃纤维带缠绕时不会出现此问题,并且抗扭性能与用玻璃纤维束差不多,均比尼龙绳缠绕的强,综合考虑用玻璃纤维带缠绕的GFRP筋材更适合作为锚杆。腐蚀环境下的力学性能,尽管FRP材料不会像金属那样产生电化学腐蚀,但仍然会在不同的化学环境中(包括酸、碱)发生性能的劣化。汉中FRP玻璃钢雕塑这种劣化随着温度的升高而加剧,由于纤维的“沥滤”作用,其很容易受到碱性和中性溶液的腐蚀,但是在树脂包裹下形成的FRP制品后会有很大的改善,目前国内外对此也开展了一定的研究,AC1440委员会有关研究没有对其产品给出明确的规定,但是强调暴露于环境中的构件,采用GFRP筋进行构件增强时,强度标准值应乘以0.7的安全系数,以作为设计强度。某实验现场取样进行常温化学物质3个月腐蚀性试验。
在GFRP筋接近破坏时,可以明显看到表面部分纤维東也逐渐被拉断,随着断裂纤维束的增多,GFRP筋中部突然发生“爆裂式”破坏,破坏部位纤维呈发散状,同时飞散岀许多细小纤维,此时试验结束,试件呈现明显的脆性破坏特征。汉中FRP玻璃钢雕塑100℃、150℃、200℃高温后的试验现象和破坏形态与常温下相似,临近破坏前的响声减弱,但破坏时的声音却仍然很大,伴随着“啪”的一声爆响,试件突然破坏;破坏处仍为发散状,说明玻璃纤维丝之间在温度降至室温后又恢复了部分黏结性能,可以协同受力。温度升至250°C、300℃C时,断口处的GP筋颜色从白色逐渐变为焦黄色,但在250°C时仍然较浅;随着温度的升高,破坏处夹杂的絮状物逐渐增多,当试验温度为300°C时,破坏处的条状物已经明显减少,稍显蓬松的絮状物增加。汉中FRP玻璃钢雕塑这些现象说明,GP筋的黏结胶体由外至内逐渐玻璃化、分解,降低了对玻璃纤维丝的黏结作用,玻璃纤维丝协同工作的能力下降。断口处颜色呈褐色,夹杂少许絮状物,说明黏结胶体在降温后黏结性能有所恢复。
剪切试验加载过程中不断发出纤维断裂的“噼啪”声,随着荷载的增大,声音逐渐增大且愈加密集,当试件破坏时,伴随着很大的响声。汉中FRP玻璃钢雕塑GFRP筋试件的破坏均为整体缓慢切断,断口较整齐,且都有不同程度的挤压变形,没有发生脆性的剪断,这说明GFRP筋中的树脂性能较好,纵向纤维对横向剪切具有一定的作用。经受100℃、150℃、200℃、250℃四个温度段并恒温30min冷却至室温后,试验现象和常温时基本相同;250℃后由于炭化比较严重,剪切试验加载过程中发出纤维断裂的“哪啪”声较前几组少了很多,随着荷载的增大,试件逐渐被压碎成为了一根根的玻璃纤维,直至被剪断。影响因素分析,直径、温度对剪切强度的影晌。GFRP筋剪切试验的主要结果。同直径和温度对GFRP筋剪切强度的影响。随着温度的升高,高温后GFRP筋的剪切强度开始时随温度的升高而呈线性增大,200℃高温后的剪切强度达最大值,150丰4c200中10mmGP筋材开始随温度的升高而呈线性增大,100om筋200℃高温后的剪切强度达到最大值,汉中FRP玻璃钢雕塑比常温时剪50042mGP筋切强度增加31.91%,中12 mm GFRP筋在200℃高温后剪切强度也达最大值。
由于黏结树脂对高温比较敏感,当温度高于一定限值时会发生玻璃化,即处于流塑状态,它对纤维丝的黏结作用会逐渐退化乃至丧失;处于高温环境中的连续纤维丝的性能也会发生不同程度的变化。汉中FRP玻璃钢雕塑因为高温下FRP筋的各种组成材料本身的变化,造成FRP筋的力学性能也会发生相应的变化。Rehm和 Franke以及Sen研究发现,E-玻璃的熔化温度为1260℃,但在200℃时其强度比20℃时要下降很多,当温度达到550℃时,玻璃纤维的抗拉强度仅是室温条件下的1/2;黏结树脂的玻璃化点一般在100~200℃,超过这一温度树脂将会发生玻璃化、热分解和炭化,从而失去黏结能力;由黏结材料和玻璃纤维丝共同组成的整体—GFRP筋材在100℃时的强度大约是20°C时的70%(钢材大约是95%),若温度高于400°C,则下降到30%(钢材大约是50%)。由此可以看出:高温对GFRP筋材的影响是巨大的。汉中FRP玻璃钢雕塑当火灾发生时,处于火场中的建筑构件均受到高温环境的影响,虽然处于混凝土保护层之内的FRP筋不直接暴露在火场中,但其周围的环境温度会随过火时间的延长而逐渐升高。
配箍试件劈裂基本无声响,试件表面细小裂缝从出现到延伸贯通历经几级加荷,达到峰值荷载时,压力表显示读数迅速下降接近0力且无法再次加上,混凝土表面裂缝宽度较无配箍试件破坏时小很多,如图521所示,表现出一定延性性质。汉中FRP玻璃钢雕塑此外,无论配箍还是无配箍劈裂破坏试件,GFRP筋表面均有明显的磨损,筋与混凝土的咬合齿未完全被剪坏,孔壁GFRP筋肋轮廓形状还比较清晰,由此可说明破坏时GFRP筋并未沿纵向产生较大滑移。发生混凝土劈裂破坏的主要有以下几种情况。对于筋直径12mm的试件,搭接长度120mm、混凝土保护层厚度30mm和45mm的全部试件以及个别保护层厚度60mm的无配箍试件发生混凝土保护层劈裂破坏。此外,混凝土强度为C30,以及配箍试件中,箍筋间距大于60mm的大部分试件也发生劈裂破坏。搭接长度180mm的试件,其破坏形态大部分与搭接长度120mm的相一致,只是随搭接长度的增大,个别试件承载能力超过GFRP筋的好的极限抗拉强度时筋被拉断。汉中FRP玻璃钢雕塑对于直径10mm的试件,搭接长度120mm和180mm的均无劈裂破坏现象。
微信公众号
陕公网安备 61011202000784号